A New Array System for Multiphysics (MT, LOTEM, & Microseismics) - Focus on Reservoir Monitoring

K. Strack, S. Davydycheva, T. Hanstein, & M. Smirnov

KMS Technologies

February 2017

© 1999 - 2017 KMS Technologies

> 17 years of excellence in electromagnetic R&D

eles.com

Background >>> Architecture & HW >>> Examples >>> Conclusion Intention

Introduction to EM monitoring for EOR Equipment overview > Examples: - Monitoring - SBHT & FSEM Conclusion & Recommendation

Background >>> Architecture & HW >>> Examples >>> Conclusion What is Monitoring & EOR?

Monitoring: Observing reservoir changes with time

Enhanced Oil Recovery (EOR): Using additional stimulation to produce oil

> Steam flood reduced 35 Ω-m reservoir resistivity to 7 Ω-m

After Zhou et al., SPWLA 2002

> 17 years of excellence in electromagnetic R&D

Background >>> Architecture & HW >>> Examples >>> Conclusion Market overview

- EOR market 2015: 20.4 Billion US \$
 - Geophysical data: temperature & pressure
- EOR market predictions 2020:
 - <u>https://globenewswire.com/</u> 283 billion US \$
 - Conservative 8% growth = 30 billion US \$
 - 'more than triple' = 70.6 Billion US \$ http://www.environmentalleader.com/

Grand View Research

Market Research & Consulting

Geophysical data \rightarrow ONLY feed forward methods

- \rightarrow GREAT opportunity
- \rightarrow ALL cause resistivity contrast

Global enhanced oil recovery (EOR) market volume by technology, 2012-2020 (Million

Barrels)

© 1999 - 2017 KMS Technologies

Background >>> Architecture & HW >>> Examples >>> Conclusion Why electromagnetics (EM) & microseismics?

SENSOR CAPABILITY	RESOLVING POWER						
	Distance	Fluid	Surface-to- surface	Surface-to- borehole	Borehole		
Seismic	Excellent	Poor	Excellent	Excellent	Ok (more noise)		
EM	Ok (5% of depth)	Excellent (water to HC)	Ok	Excellent	Excellent (less noise & distance)		
Gravity	Poor	Ok (oil to gas)	Poor	Poor (no source)	Poor (no source)		
Strongest Synergy	Seismic	EM/seismic	Seismic/EM/ gravity	Seismic/EM	Seismic/EM/ gravity		

With permission of WellDynamics (now Halliburton)

Background >>> Architecture & HW >>> Examples >>> Conclusion Today's technical advances:

- EM (E & H) & microseismics in one unit
- State-of-the-art seismic architecture (node)
 - Wireless array
 - Large memory SD cards
- EM requirements
 - Broad band (DC-80 kHz, low noise, low drift)
 - Multi-components, multi-physics
 - Transition to digital sensors- partial
 - High dynamic range
 - 8 km long range wireless & WIFI (2 types)
 - Autonomous, can record for weeks
 - GPS timing & atomic crystal (marine option)
 - Lower cost

Processing is seismic software compatible

Background >>> Architecture & HW >>> Examples >>> Conclusion Land acquisition requirements

Background >>> Architecture & HW >>> Examples >>> Conclusion EM technical status - Monitoring

- Land: technology available, application new
 - Hydrocarbon apps require <u>conductor AND resistor</u> sensitivities
 - Smaller technical challenges: 3D, S/N etc.
 - \rightarrow integration requires unique TALENTS
- Borehole: standard all available
 - Induction logs (low resistivities) & Laterologs (higher resistivities)
 - Array tools extend range with large OVERLAP
 - 3D induction
 - Borehole mud gives some limitations (near surface in exploration)
 - Fully integrated into value solutions
- Airborne: conductive targets; not important for monitoring
- Marine: in principle same as land easier science, more difficult operation

Background >>> HW architecture >>> Examples >>> Conclusion Anisotropy is EVERYWHERE – Problem solved

Background >>> Architecture & HW >>> Examples >>> Conclusion UNBIASED resistivities with contraints from multi-physics I

Problem: Mapping porosities in carbonates

Background >>> Architecture & HW >>> Examples >>> Conclusion UNBIASED resistivities with contraints from multi-physics II

Problem: Mapping porosities in carbonates

Background >>> Architecture & HW >>> Examples >>> Conclusion Dense acquisition → better images

Background >>> HW architecture >>> Examples >>> Conclusion Architecture & hardware

- Introduction to EM monitoring for EOR
- Equipment overview
- Examples:
 - Monitoring
 - FSEM &
 Shallow Borehole
- Conclusion

Background >>> HW architecture >>> Examples >>> Conclusion Architecture & hardware: 2016 - 150 KVA transmitter

Background >>> HW architecture >>> Examples >>> Conclusion Architecture & hardware: Land & shallow borehole I

© 1999 - 2017 KMS Technologies

> 17 years of excellence in electromagnetic R&D

Background >>> HW architecture >>> Examples >>> Conclusion Architecture & hardware: Land & shallow borehole II

© 1999 - 2017 KMS Technologies

> 17 years of excellence in electromagnetic R&D

Background >>> HW architecture >>> Examples >>> Conclusion Architecture & hardware: Land & shallow borehole III

© 1999 - 2017 KMS Technologies

Background >>> HW architecture >>> Examples >>> Conclusion Receiver (KMS-820): for MT & CSEM, transmitter control, MMT

© 1999 - 2017 KMS Technologies

Background >>> HW architecture >>> Examples >>> Conclusion KMS-Pro software: MT, Lotem & marine CSEM

Background >>> HW architecture >>> Examples >>> Conclusion KMS-5100 Transmitter – 100 KVA 2016

> 17 years of excellence in electromagnetic R&D

Background >>> Architecture & HW >>> Examples >>> Conclusion Outline

Objective & history Architecture & hardware > Examples: - Monitoring - Shallow borehole & FSEM ➢ Conclusion

Background >>> Architecture & HW >>> Examples >>> Conclusion Reservoir Monitoring: Fluid variations & Seal integrity

Background >>> Architecture & HW >>> Examples >>> Conclusion Typical Heavy Oil reservoir → multi-sensor/multi-physics

Background >>> Architecture & HW >>> Examples >>> Conclusion Heavy Oil 3D modeling results

Slide 24

Electric field Ez (z = 10 m)

Water-flooded area contour may be determined with great accuracy

SPE-184089-MS • Integrated Geophysical Reservoir Monitoring for Heavy Oil • Dr. Herminio Passalacqua

Background >>> Architecture & HW >>> Examples >>> Conclusion Always carry out Feasibility & Noise test FIRST

Monitoring project workflow

Background >>> Architecture & HW >>> Examples >>> Conclusion Feasibility: 3D modeling results compared with sensor noise

Transients with expected noise levels

Slide 26

Background >>> Architecture & HW >>> Examples >>> Conclusion Reservoir Monitoring: Example layout design

			wicroseismic sensors				
Site	MODULE	Ex-Ey	Ez	Hz	3C fluxgate H	3C geopho	
	KMS-820	x		X	x	x	
	KMS-831	x	1	X		X	
*	SBHT	х	х	10.5	X	x	

E – electric field sensors H – magnetic field sensors Background >>> Architecture & HW >>> Examples >>> Conclusion Ghawar: Fluid displacement heterogeneity

© 1999 - 2017 KMS Technologies

> 17 years of excellence in electromagnetic R&D

\mathbf{i}

Background >>> Architecture & HW >>> Examples >>> Conclusion Percent change

Background >>> Architecture & HW >>> Examples >>> Conclusion Constructing the block model

After Colombo et al. 2010

Background >>> Architecture & HW >>> Examples >>> Conclusion Surface-to-borehole anomaly (%): E_z

Background >>> Architecture & HW >>> Examples >>> Conclusion Ghawar: ADD BOREHOLE: Integration!

Background >>> Architecture & HW >>> Examples >>> Conclusion Surface-to-borehole 4C/EM system I

Background >>> Architecture & HW >>> Examples >>> Conclusion Surface-to-borehole 4C/EM system II

Background >>> Architecture & HW >>> Examples >>> Conclusion Reservoir Monitoring: 195 channel monitoring system

ARRAY Electromagnetics

- 195 channels, wifi, wireless or LAN
- 3C magnetic field (DC to 40 kHz)
- 3C microseismic
- 2C electric fields
- Shallow borehole (microseismic/EM)

Background >>> Architecture & HW >>> Examples >>> Conclusion Reservoir Monitoring: Raw data example: microseismic/EM monitoring

© 1999 - 2017 KMS Technologies

Background >>> Architecture & HW >>> Examples >>> Conclusion Outline

Objective & history Architecture & hardware > Examples: - Monitoring - FSEM & SBHT ➢ Conclusion

Background >>> Architecture & HW >>> Examples >>> Conclusion Reservoir Monitoring comments

> Monitoring

- Seeing anomaly Easy
- Understanding results complicated
- Issue 1: Image focus
- Issue 2: Borehole calibration !!!!!
 - Surface-to-borehole
 - Through Casing

Background >>> Architecture & HW >>> Examples >>> Conclusion Reservoir Monitoring comments

> Monitoring

- Seeing anomaly Easy
- Understanding results complicated
- Issue 1: Image focus
- Issue 2: Borehole calibration !!!!!
 - Surface-to-borehole
 - Through Casing

Background >>> HW architecture >>> Examples >>> Conclusion FSEM: Focused source solution to volume imaging

Rykhlinskaya, E., & Davydycheva, S., 2014, U.S. Patent 8,762,062 B2. Davydycheva, S., 2016, U.S. Patent Application US 2016/0084980 A1.

© 1999 - 2017 KMS Technologies

Background >>> HW architecture >>> Examples >>> Conclusion FSEM: Focused source solution to volume imaging

Background >>> Workflow >>> HW architecture >>> Examples >>> Conclusion Alternative: Shallow borehole tool - Ez

Background >>> Architecture & HW >>> Examples >>> Conclusion Reservoir Monitoring comments

> Monitoring

- Seeing anomaly Easy
- Understanding results complicated
- Issue 1: Image focus
- Issue 2: Borehole calibration !!!!!
 - Surface-to-borehole
 - Through Casing

Background >>> Architecture >>> Examples >>> Conclusion Summary & 5 year vision

- New instruments allow us to re-visit
 - Full anisotropy 3D models
 - 3D tensor acquisition $\sqrt{}$
 - Tie to borehole measurements
- ➢ Value recognized (but NOT understood) → PILOT demonstration are required
- ➢ 3D models give better inside
- Integration with other methods is key
- Big potential in reservoir monitoring

All technology protected by US & Foreign patents (see KMS Technologies website)

0:44